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Abstract 

The gas turbine is considered to be a very complex piece of machinery because of both its static structure 

and the dynamic behavior that results from the occurrence of vibration phenomena. It is required to adopt 

monitoring and diagnostic procedures for the identification and localization of vibration flaws in order to ensure 

the appropriate operation of large rotating equipment such as gas turbines. This is necessary in order to avoid 

catastrophic failures and deterioration and to ensure that proper operation occurs. Utilizing an approach that is 

based on spectrum analysis, the purpose of this study is to provide a model for the monitoring and diagnosis of 

vibrations in a GE MS3002 gas turbine and its driven centrifugal compressor. This will be done by utilizing the 

technique. Following that, the collection of vibration measurements for a model of the centrifugal compressor 

served as a suggestion for an additional method. This method is based on the neuro-fuzzy approach type ANFIS, 

and it aims to create an equivalent system that is able to make decisions without consulting a human being for 

the purpose of detecting vibratory defects. In spite of the fact that the compressor that was investigated has 

flaws, this procedure produced satisfactory results. 
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1. INTRODUCTION  

 

There are a variety of applications for gas 

turbines in industry; however, one of the most 

common uses for gas turbines is in the oil business, 

where they are extensively used to ensure safe gas 

transportation in extremely long gas pipes. Because 

of the growing complexity of industrial installations 

and the severe operational limitations they face, the 

value that these supervisory tactics provide to the 

operation of industrial systems has increased [1-15]. 

Typically, programmable logic controllers are 

given process control settings, and real data 

(measurements, alerts, faults, operational status 
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feedback, etc.) is used to monitor vibration in 

rotating machinery. 

The development of the gas turbine and its 

success have been dependent on the enhancement of 

its technical performance. High safety requirements, 

reduced operating costs, the control of equipment 

availability, and improved reliability give system 

maintenance a key role. 

It should be possible to act only in the event that 

faulty components are present, reduce the amount of 

time required for repairs, and produce a diagnosis 

that is both accurate and straightforward, despite the 

complexity of the apparatus. This necessitates the 

unavoidable application of preventative 

maintenance, which is one of the strategies that is 

now enjoying the greatest level of popularity in the 

sector. 

The latter has become a real profession with its 

own concepts and methodology. Among the factors 

that have favoured this type of maintenance, we can 

mention automation, diagnosis, and industrial 

monitoring. 

Diagnosis can be seen as an attempt to explain 

abnormal system behaviour by analysing its relevant 
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characteristics. It is reasoning leading to the 

identification of the cause of an anomaly from the 

information revealed by observations (measurement, 

sign, symptom). 

In this environment, many different research 

communities in automation and artificial intelligence 

have created numerous different ways for fault 

identification and diagnosis. It is generally agreed 

that using methods and strategies from artificial 

intelligence (AI), like expert systems (ES), artificial 

neural networks (ANN), and fuzzy logic, can be a 

good way to make reliable monitoring systems [16-

21]. 

In this direction, vibration analysis has become 

an essential tool for any maintenance department to 

ensure effective monitoring of machines whose 

failures or degraded operation present a major risk 

for the safety of personnel, production, or the quality 

of the finished product [22-24]. 

The aim of the work is to find methods of 

monitoring and diagnosis in order to increase safety 

and guarantee the continuity of production and 

operation in industrial sectors by taking the example 

of a gas turbine. 

In this work, we examined real vibration 

measurements of the GE MS 3002 gas turbine and 

its driven centrifugal compressor using FFT and 

wavelet transform to analyze and noise the real 

vibration signals, which were obtained by vibration 

sensors on site. 

We proposed an intelligent expert system based 

on the ANFIS approach [19]. The expert system 

exploits neuro-fuzzy self-learning based on real 

vibration data (without faults) to create an equivalent 

system capable of making decisions without 

consulting a human being to estimate and identify 

vibration faults on the centrifugal compressor using 

residual signal generation. The results obtained were 

satisfactory, and we were able to detect faults using 

our model. 

 

2. INDUSTRIAL APPLICATION 

 

In this work, the vibration behaviour of a gas 

turbine that was installed at the gas center of 

TIMZHERT, which is located in Hassi R-Mel, in the 

south of Algeria, was investigated [15]. The analysis 

of observed signals was used to determine the 

vibration behaviour. 

The four main bearings of the MS-3002 gas 

turbine hold both the high-pressure (HP) and low-

pressure (LP) rotors in place. Bearings are labeled 

with the numbers 1, 2, 3, and 4. 

 

2.1. Centrifugal compressor (the load) 

In a centrifugal compressor, the air flow is radial 

from the impellers, and the air passes through 

diffusers from one stage to the next before being 

discharged. Compressors can be in suction, 

discharge, or flow control, depending on process 

requirements. A centrifugal compressor can operate 

from a couple thousand RPM to over 20,000 RPM, 

depending on the compressor size and manufacturer. 

Speeds of 100,000 rpm can be achieved in the 

aviation and aerospace industries. 

 
Table 1. Specifications of the examined turbine 

Parameter Value or symbol 

Designer: General Electric GE 

Type MS 3002 

HP speed axial compressor 7100 rpm 

No. floor wheel (s) HP 01 

No. axial compressor stage 15 

BP speed 6500 rpm 

No. BP wheel 01 

Turbine power 80% 9400 CV 

 

 

Fig. 1. Actual photo of the Centrifugal 

Compressor of the DP-STAH base 

 

2.2. Wavelet transforms 

The wavelet transform allows a localization in 

time and frequency. The wavelet transforms 

𝑇𝑂(𝑎, 𝑏), is defined as the dot product between 

Ψa,b (t), and the signal 𝑠(𝑡) according to the 

following equation [20]: 

 

𝑇𝑂(𝑎, 𝑏) = |𝑎|−1/2 ∫ 𝑠(𝑡)Ψ∗ (
𝑡−𝑏

𝑎
)

+∞

−∞
𝑑𝑡       (1) 

- A complex wave can be broken down into its 

component sinusoids and studied using the 

Fourier transform. 

- The Fourier transform is used to identify what 

those sinusoidal components are for a particular 

wave. 

- The discrete Fourier transform is going to be the 

method that we employ here. 

Convolutions between wavelets and data can be 

computed simultaneously via the convolution 

theorem. 

Since the wavelet transform necessitates a more 

in-depth examination in the frequency domain, a 

separate review is necessary for the spectrum 

analysis and its various variants, as well as its link to 

other transforms and special functions and, to a 

much greater extent, its specificity in a variety of 

applications [20]. 

 

2.2. ANFIS architecture 

The ANFIS architecture is a form of adaptive 

networking that makes use of supervised learning 

algorithms when it comes to the learning process. 
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This architecture performs a function that is 

analogous to the Takagi-Sugeno fuzzy inference 

system model. The fuzzy reasoning procedure for the 

Takagi-Sugeno model and the ANFIS architecture is 

depicted in Figure 2. Assume that there are only two 

inputs, x and y, and one output, f, for the sake of 

simplicity. Following is an explanation of the two 

principles that were utilized in the "If-Then" 

procedure for the Takagi-Sugeno model: [19]: 

 
𝑅𝑢𝑙𝑒𝑟 1 = 𝑖𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1  𝑇ℎ𝑒𝑛 𝑓1

= 𝑝1𝑥 + 𝑞1𝑥 + 𝑟1 

𝑅𝑢𝑙𝑒𝑟 2 = 𝑖𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2  𝑇ℎ𝑒𝑛 𝑓2

= 𝑝2𝑥 + 𝑞2𝑥 + 𝑟2 

 

  

 

 

Where A1, A2 and B1, B2 are the membership 

functions of each input x and y, while p1, q1, r1, and 

p2, q2, r1, are linear parameters in part as a 

consequence of Takagi - Sugeno fuzzy inference 

model. 

The fuzzy inference procedures that are used for 

the development of the areas of data that are 

categorized by the neural networks [19] are used to 

acquire the optimization variables of the gas turbine 

that was under study. 

The ANFIS architecture can be broken down into 

five distinct layers, as seen in figure 3. While the 

other layers each have a fixed node, the first and 

fourth layers each have an adaptable node. A concise 

explanation of each layer can be found in the 

subsequent section: 

• Layer 1: each node of this layer adapts to a 

parameter of the function. 

 

Fig. 3. ANFIS Architecture 

 

 

Fig. 4. Back propagation neural network with 

a nonlinear function 

 

Figure 4 is a diagram structure of the 

backpropagation algorithm. The key of 

backpropagation algorithm is that the error between 

the desired output yd(t) and the output y(t) of the 

neurons is fed back to the network to optimize the 

weights in each neuron to minimize the error [19,20]. 

Each point in the input space is assigned a 

membership value (or degree of membership) 

between 0 and 1 according to a curve called a 

membership function, also called a degree of 

membership function (DMF). Sometimes the term 

"universe of conversation" will be used to describe 

input space. 

 

𝜇𝐴𝑖(𝑥) = exp [− (
𝑥 − 𝑐𝑖

2𝑎𝑖
)] 

𝜇𝐴𝑖(𝑥) =
1

1 + |
𝑥−𝑐𝑖

𝑎𝑖
|

2𝑏  

𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥),    𝑖 = 1, 2 

𝑂1,𝑖 = 𝜇𝐵𝑖−2(𝑦),    𝑖 = 3, 4 

 

 

 

(3) 

 

Degrees of membership functions for fuzzy sets 

𝐴𝑖 and 𝐵𝑖 are denoted by _𝜇𝐴𝑖 and 𝜇𝐵𝑖−2. 

{𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖} are parameters of a membership function 

that can alter the form of the membership function. 

Parameters at this level are sometimes referred to as 

"base" parameters. 

• Layer 2: Each node in this layer is fixed or non-

adaptive, and the circular node is labelled as 
∏ . The signal entering a node is multiplied by 

whatever is going in, and the product is sent on 

to the next node as the output. The strength of 

each rule's execution is represented by a node in 

this layer. The output is obtained by using the T-

norm operator with generic performance, such as 

AND, in the second layer. 

𝑂2𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) ∗ 𝜇𝐵𝑖(𝑦), 𝑖 = 1,2       (4) 

Where 𝑤𝑖  is the output that represents the firing 

force of each rule. 

• Layer 3: The circular node in this layer is 

designated as N, indicating that it is non-adaptive 

and therefore fixed. The normalized shot 

resistance is the end outcome [19,20]. 

𝑂3𝑖 = 𝑤𝑖 =
𝑤𝑖

∑ 𝑤𝑖𝑖
                          (5) 

• Layer 4: Each node in this layer is a single-

output adaptive node, with a node function 

defined as 

𝑂4𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)           (6) 

Where 𝑤𝑖  is the normalized firing force of the 

previous layer (third layer) and(𝑝𝑖𝑥 + 𝑞𝑖𝑥 + 𝑟𝑖) is a 

node parameter. The parameters of this layer are 

called consequent parameters. 

• Layer 5: The output is calculated as the total of 

all inputs from the preceding node at this fixed or 

non-adaptive node. A circular node in this layer 

is denoted by Σ. 

𝑂4𝑖 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖 =
∑ 𝑤𝑖𝑖 𝑓𝑖

∑ 𝑤𝑖𝑖
𝑖                   (7) 

 

https://ijcsm.springeropen.com/articles/10.1186/s40069-018-0316-x#Fig2
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3. RESULTS AND DUSCUSSION 

 

3.1. Radial measurement of the Centrifugal 

Compressor 

Our first case study is the vibration monitoring of 

the centrifugal compressor. The radial vibrations 

represent this component of shaft vibration. This 

vibration component is measured with two proximity 

sensors (X, horizontal) and (Y, vertical) oriented 

perpendicular to the shaft center with an angular 

phase shift of 90°±. This measurement gives a 

complete view of the shaft vibration and the radial 

position within the bearing set; see Figure 5. 

 
Fig. 5. Measurement points on the 

centrifugal. compressor 

 

 
Fig.6. Vibration signals at the two bearings of 

the centrifugal compressor 

 

The figure 6, shows the vibrations measured on 

bearing 1 (X, Y position) and bearing 2 (X, Y 

position) of the centrifugal compressors over a 

period of time (s) as a function of the amplitude in 

(µm). 

This table summarizes the alarm thresholds 

indicated in their monitoring system: 

 
Table 2. Alarm thresholds 

 Vibration 

seismic 

(velocity 

probe) 

Radial 

direction 

proximity 

probes 

Axial 

direction 

proximity 

probes 

Warning 

threshold 

(pre-alarm) 

12.5 

mm/s 

70 µm 1 mm 

Threshold of 

Danger 

(trip) 

25  

mm/s 

90 µm 1.2 mm 

 

Two alarm thresholds for displacement have 

been defined by the GENERAL ELECTRIC (GE). 

company. The alert threshold (pre-alarm) is 70 µm, 

and the danger alarm threshold is 90 µm. 

We notice that the vibration on our figure in radial 

direction position X of bearing 1 clearly exceeds the 

threshold of alert (pre-alarm). To detect the presence 

of a defect or not, we used the Fourier transform 

(FFT): 

 
Fig. 7. Spectrum of the bearing 1 of the 

centrifugal compressor 

 

The dynamic behaviour and displacement of the 

rotor shown in Figure 7 at level bearing 1 (horizontal 

radial direction) rotate at 10049 rpm. We note a very 

important peak at the first order for the frequency of 

rotation (167.48 Hz); a strong unbalance, 

misalignment, blade rub, and gearbox wear lead to 

harmonics. In order to be sure of our diagnosis 

concerning an unbalanced fault or not, we measured 

the change of position of a rotor in the axial direction 

in relation to the thrust bearing using two proximity 

sensors.

 
Fig. 8. Vibration signal and spectrum of the 

bearing 1 

 

Figure 8 represents the vibration at the thrust 

bearing of the centrifugal compressor in the axial 

direction. We notice that there is no exceeding of the 

warning threshold. The following spectrum serves as 

an illustration of this: 
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Fig. 9. Vibration signal and spectrum of the 

thrust bearing 2 

 

The two-shaft turbine is mechanically more complex 

than the single-shaft turbine. However, it provides better 

efficiency at partial load, is particularly well suited to 

driving a compressor, which is taken over when the speed 

is increased, and can operate over a wide speed range. Also 

noteworthy is the reduced power of the starting motor, 

which drives only the first shaft. 

 
Fig.9. Horizontal radial vibration of bearing 

1of the CC 

 

3.2. Variation of the HP and LP rotor speed 

This table summarizes the speed measurements 

of each rotor constituting the gas turbine and the 

driven load: 

 
Table 3. Table that summarizes the speeds of our 

measurements at each part of the system 

 Turbine 

HP 

Turbine 

BP 

Multiplier 

BP rotor 
coupling 

Multiplier 

rotor 
coupling 

with CC 

Speed 
(rpm) 

7041 
rpm 

5833 
rpm 

5818 
rpm 

10049 
rpm 

Rotation 

frequency 

(Hz) 

117.35 

Hz 

97.21 

Hz 

96.96 

Hz 

167.48 

Hz 

 

 
Fig. 10. Spectrum at stage 1, of the HP 

turbine 

 

Using the wavelet application to remove the 

noise, we obtain the following diagram: 

 
Fig.11. Wavelet application spectrum 

 

This figure 10 shows a spectrum of wavelet 

coefficients over a frequency band [0:12000 Hz]. 

The rotation frequency fr = 117.35 Hz for a speed of 

7041 rpm of the HP rotor, and in our spectrum, the 

first important peak that is clearly seen is 3131 Hz, 

which corresponds to 26 x the rotation frequency. So 

we are very far from detecting a defect on the 

machine because the majority of the main defects do 

not exceed order 3 to 4 of the rotation frequency. 

 
Fig. 12. Spectrum at bearing, 1 of the HP 

turbine 

 

3.3. Monitoring of the centrifugal compressor 

based on ANFIS 

In this section, we will construct a model and 

prediction based on the neuro-fuzzy system type 

ANFIS. Earlier, we mentioned that this system has 

the ability to automatically generate models based on 
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fuzzy rules that are based on the inference model of 

Takagi Sugeno. 

The modelling of our system is based on input 

and output data. The input is a vibratory signal of 

level 1, without defects, or the machine works in 

good condition according to time. The input is 

represented by 1024 samples, and the ANFIS model 

uses this input to generate a single output. The input 

is fuzzified by three fuzzy sets of Gaussian types 

(Figure 13). The output is represented as a figure. 

 
Fig. 13. Gaussian membership functions 

 

The estimation performance of our ANFIS 

system with the input used was tested under three 

groups: the training group, which is used for 

supervised learning (Figure 14), the test group 

(Figure 15), and validation, and the results of these 

last three are all cumulated in Figure 16. 

 
Fig. 14. Data test 

 

Figure 16 shows the fault-free vibration signal 

output of the centrifugal compressor bearing 1 

compared with the ANFIS model output. We notice 

that the error between the two is too small (error = 

10-8 µm), so our learning was successful. 

To characterize the prediction system performed, 

we calculate the residual. This residual is the 

difference between a measured output signal and the 

proposed ANFIS model estimate. It is given by the 

following relationship (fig. 17). 

 
 

 

 
Fig. 15. Data training 

 

 
Fig. 16. Estimation of the output of the 

faultless signal with the ANFIS output and 

the error between them 

 

𝑅(𝑘) = 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑘) − 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑘)              (8) 

 

 
Fig. 17. Vibration signal measured with the 

output signal of the ANFIS model 

 

 
Fig. 18. The residual between the actual 

measured signal and the output signal of the 

ANFIS model 
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Figure 18 shows the residual between the signal 

measured on bearing 1 of the centrifugal 

compressors and the output signal of our ANFIS 

model; all values that are outside the interval [-20, 

+20] are faults. In order to define the detection of 

faults on bearing 1 of the centrifugal compressors, as 

shown in Figure 19. 

 
Fig.19. The evaluation of the defects on the 

examined system 

 

Figure 19 shows the evaluation of the defects; the 

values that are equal to 1 express that there is a 

defect; on the other hand, the values that are equal to 

zero express that there is no defect. 

 

4. CONCLUSION 

 

In this paper, we have examined real vibration 

measurements of the GE MS 3002 gas turbine and 

its driven centrifugal compressor using FFT and 

wavelet transform to analyze and noise the real 

vibration signals, which were obtained by vibration 

sensors on site. 

Several faults were detected at the centrifugal 

compressor, at the BP turbine, and at the HP turbine. 

We proposed an intelligent expert system based on 

the ANFIS approach. The expert system exploits 

neuro-fuzzy self-learning based on real vibration 

data (without defects) to create an equivalent system 

capable of making decisions without consulting a 

human being to estimate and identify the vibration 

defects on the centrifugal compressor using residual 

signal generation. The results obtained were 

satisfactory, and we were able to detect faults using 

our model. 
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